ChipFind - документация

Электронный компонент: OP200

Скачать:  PDF   ZIP
www.docs.chipfind.ru
background image
REV. A
Information furnished by Analog Devices is believed to be accurate and
reliable. However, no responsibility is assumed by Analog Devices for its
use, nor for any infringements of patents or other rights of third parties that
may result from its use. No license is granted by implication or otherwise
under any patent or patent rights of Analog Devices.
a
OP200
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700
www.analog.com
Fax: 781/326-8703
Analog Devices, Inc., 2002
Dual Low Offset, Low Power
Operational Amplifier
GENERAL DESCRIPTION
The OP200 is the first monolithic dual operational amplifier to
offer OP77 type precision performance. Available in the industry
standard 8-pin pinout, the OP200 combines precision performance
with the space and cost savings offered by a dual amplifier.
The OP200 features an extremely low input offset voltage of less
than 75
mV with a drift below 0.5 mV/C, guaranteed over the full
military temperature range. Open-loop gain of the OP200 exceeds
5,000,000 into a 10 k
W load; input bias current is under 2 nA;
CMR is over 120 dB and PSRR below 1.8
mV/V. On-chip zener-
zap trimming is used to achieve the extremely low input offset
voltage of the OP200 and eliminates the need for offset pulling.
Power consumption of the OP200 is very low, with each amplifier
drawing less than 725
mA of supply current. The total current
drawn by the dual OP200 is less than one-half that of a single
OP07, yet the OP200 offers significant improvements over this
industry standard op amp. The voltage noise density of the OP200,
11 nV/
Hz at 1 kHz, is half that of most competitive devices.
The OP200 is pin compatible with the OP221, LM158,
MC1458/1558, and LT1013.
PIN CONNECTIONS
16-Pin SOIC
(S
-Suffix)
16
15
14
13
12
11
10
9
1
2
3
4
5
6
7
8
NC = NO CONNECT
IN A
+IN A
NC
V
NC
+IN B
IN B
NC
OUT A
NC
NC
V+
NC
NC
OUT B
NC
+
+
EPOXY MINI-DIP
(P-Suffix),
8-Pin Hermetic DIP
(Z-Suffix)
8
7
6
5
V+
IN B
+IN B
OUT B
1
2
3
4
IN A
+IN A
V
OUT A
+
+
A
B
FEATURES
Low Input Offset Voltage: 75 V Max
Low Offset Voltage Drift, Over 55 C < T
A
< +125 C:
0.5 V/ C Max
Low Supply Current (Per Amplifier): 725
mA Max
High Open-Loop Gain: 5000 V/mV Min
Low Input Bias Current: 2 nA Max
Low Noise Voltage Density: 11 nV/
Hz at 1 kHz
Stable with Large Capacitive Loads: 10 nF Typ
Pin Compatible to OP221, MC1458, and LT1013 with
Improved Performance
Available in Die Form
+IN
IN
V
OUT
V+
BIAS
VOLTAGE
LIMITING
NETWORK
Figure 1. Simplified Schematic (One of two amplifiers is shown.)
The OP200 is an ideal choice for applications requiring multiple
precision op amps and where low power consumption is critical.
For a quad precision op amp, see the OP400.
background image
REV. A
2
OP200SPECIFICATIONS
(V
S
=
15 V, T
A
= 25 C, unless otherwise noted.)
ELECTRICAL CHARACTERISTICS
OP200A/E
OP200F
OP200G
Parameter
Symbol
Conditions
Min
Typ
Max
Min
Typ
Max
Min
Typ
Max
Unit
Input Offset Voltage
V
OS
25
75
50
150
80
200
mV
Long Term Input
Voltage Stability
0.1
0.1
0.1
mV/mo
Input Offset Current I
OS
V
CM
= 0 V
0.05
1.0
0.05
2.0
0.05
3.5
nA
Input Bias Current
I
B
V
CM
= 0 V
0.1
2.0
0.1
4.0
0.1
5.0
nA
Input Noise Voltage
e
n p-p
0.1 Hz to 10 Hz
0.5
0.5
0.5
mV
p-p
Input Noise
e
n
f
O
= 10 Hz
22
36
22
36
22
nV/ Hz
Voltage Density
1
f
O
= 1000 Hz
11
18
11
18
11
Input Noise Current
i
n p-p
0.1 Hz to 10 Hz
15
15
15
pA
p-p
Input Noise
Current Density
i
n
f
O
= 10 Hz
0.4
0.4
0.4
pA/ Hz
Input Resistance
Differential Mode
R
IN
10
10
10
M
W
Input Resistance
Common Mode
R
INCM
125
125
125
G
W
Large Signal
A
VO
V
O
-
10 V
Voltage Gain
R
L
= 10 k
W
5000
12000
3000
7000
3000
7000
R
L
= 2 k
W
2000
3700
1500
3200
1500
3200
M/mV
NOTES
1
Sample tested
2
Guaranteed but not 100% tested
3
Guaranteed by CMR test
background image
REV. A
3
OP200
ELECTRICAL CHARACTERISTICS
(V
S
= 15 V, 55 C
T
A
+125 C for OP200A, unless otherwise noted.)
OP200A
Parameter
Symbol
Conditions
Min
Typ
Max
Unit
Input Offset Voltage
V
OS
45
125
mV
Average Input Offset Voltage Drift
TCV
OS
0.2
0.5
mV/C
Input Offset Current
I
OS
VCM = 0 V
0.15
2.5
nA
Input Bias Current
I
B
VCM = 0 V
0.9
5.0
nA
Large Signal Voltage Gain
A
VO
V
O
= 10 V
R
L
= 10
W
3000
9000
V/mV
R
L
= 2 k
W
1000
2700
V/mV
Input Voltage Range
*
IVR
12
12.5
V
Common-Mode Rejection
CMR
V
CM
=
12 V
115
130
dB
Power Supply Rejection Ratio
PSRR
V
S
= +3 V to +18 V
0.2
3.2
mV/V
Output Voltage Swing
V
O
R
L
= 10 k
W
12
12.4
V
R
L
= 2 k
W
11
12
V
Supply Current Per Amplifier
I
SY
No Load
600
775
mA
Capacitive Load Stability
A
V
= +1
8
nF
NOTE
*Guaranteed by CMR test.
ELECTRICAL CHARACTERISTICS
OP200A/E
OP200F
OP200G
Parameter
Symbol
Conditions
Min
Typ
Max
Min
Typ
Max
Min
Typ
Max
Unit
Input Voltage Range
3
IVR
12
13
12 13
12 13
V
Common-Mode
Rejection
CMR
V
CM
=
12 V
120
135
115
135
110
130
dB
Power Supply
V
S
=
3 V
Rejection Ratio
PSRR
to
18 V
0.4
1.8
0.4
3.2
0.6
5.6
mV/V
Output Voltage
V
O
R
L
= 10 k
W
12
12.6
12 12.6
12 12.6
V
Swing
R
L
= 2 k
W
11
12.2
11 12.2
11 12.2
V
Supply Current
Per Amplifier
I
SY
No Load
570
725
570
725
570
725
mA
Slew Rate
SR
0.1
0.15
0.1
0.15
0.1
0.15
V/
mS
Gain Bandwidth
Product
GBWP
A
V
= 1
500
500
500
kHz
Channel Separation
2
V
O
= 20 Vp-p
CS
f
O
= 10 Hz
123
145
123
145
123
145
dB
Input Capacitance
C
IN
3.2
3.2
3.2
pF
Capacitive Load
A
V
= 1
Stability
No Oscillations
10
10
10
nF
NOTES
1
Sample tested
2
Guaranteed but not 100% tested
3
Guaranteed by CMR test
(V
S
= 15 V, T
A
= 25 C, unless otherwise noted.)
background image
REV. A
4
OP200SPECIFICATIONS
ELECTRICAL CHARACTERISTICS
OP200E
OP200F
OP200G
Parameter
Symbol
Conditions
Min
Typ
Max
Min
Typ
Max
Min
Typ
Max
Unit
Input Offset Voltage
V
OS
35
100
80
250
110
300
mV
Average Input Offset
Voltage Drift
TCV
OS
0.2
0.5
0.5
1.5
0.6
2.0
mV/C
Input Offset Current I
OS
V
CM
= 0 V
0.08
2.5
0.08
3.5
0.1
6.0
nA
Input Bias Current
I
B
V
CM
= 0 V
0 3
5.0
0.3
70
0.5
10.0
nA
Large-Signal
V
O
=
10 V
Voltage Gain
A
VO
R
L
= 10 k
W
3000
10000
2000
5000
2000
5000
V/mV
R
L
= 2 k
W
1500
3200
1000
2500
1000
2500
V/mV
Input Voltage
Range
*
IVR
12
12.5
12 12.5
12 12.5
V
Common-Mode
Rejection
CMR
V
CM
=
12 V
115
130
110
130
105
130
dB
Power Supply
PSRR
V
S
=
3 V
0.15
3.2
0.15
5.6
0.3
10.0
mV/V
Rejection Ratio
to
18 V
Output Voltage
V
O
R
L
= 10 k
W
12
12.4
12 12.4
12 12.4
V
Swing
R
L
= 2 k
W
11
12
11 12
11 12.2
V
Supply Current
Per Amplifier
I
SY
No Load
600
775
600
775
600
775
mA
Capacitive Load
A
V
= 1
10
10
10
nF
Stability
No Oscillations
10
10
10
nF
NOTE
*Guaranteed by CMR test.
(V
S
=
15 V, 40 C T
A
+85 C, unless otherwise noted.)
background image
REV. A
OP200
5
ORDERING GUIDE
Package
T
A
= 25 C
Operating
V
OS
Max
CERDIP
Temperature
( V)
8-Pin
Plastic
Range
75
OP200AZ
MIL
75
OP200EZ
XIND
150
OP200FZ
*
XIND
200
OP200GP
XIND
200
OP200GS
XIND
*Not for new design, obsolete April 2002.
For military processed devices, please refer to the Standard
Microcircuit Drawing (SMD) available at
www.dscc.dla.mil/programs/milspec/default.asp
ABSOLUTE MAXIMUM RATINGS
1
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
20 V
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . .
30 V
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . Supply Voltage
Output Short-Circuit Duration . . . . . . . . . . . . . . Continuous
Storage Temperature Range
P, S, Z-Package . . . . . . . . . . . . . . . . . . . . . 65
C to +150C
Lead Temperature Range (Soldering, 60 sec) . . . . . . . 300
C
Junction Temperature (T
J
) . . . . . . . . . . . . . 65
C to +150C
Operating Temperature Range
OP200A . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
C to +125C
OP200E, OP200F . . . . . . . . . . . . . . . . . . . . 40
C to +85C
OP200G . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
C to +85C
Package Type
JA
2
JC
Unit
8-Pin Hermetic DIP (Z)
148
16
C/W
8-Pin Plastic DIP (P)
96
37
C/W
16-Pin SOL (S)
92
27
C/W
NOTES
1
Absolute maximum ratings apply to both DICE and packaged parts, unless
otherwise noted.
2
JA
is specified for worst case mounting conditions, i.e.,
JA
is specified for
device in socket for CERDIP and P-DIP packages;
JA
is specified for device
soldered to printed circuit board for SOL package.
CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily
accumulate on the human body and test equipment and can discharge without detection. Although
the OP200 features proprietary ESD protection circuitry, permanent damage may occur on devices
subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are
recommended to avoid performance degradation or loss of functionality.
WARNING!
ESD SENSITIVE DEVICE
SMD Part Number
ADI Equivalent
5962-8859301M2A
OP200ARCMDA
5962-8859301MPA
OP200AZMDA
1/2
OP200
CHANNEL SEPARATION = 20 LOG
V
1
1/2
OP200
V
2
50
50k
20Vp-p
@ 10Hz
V
1
V
2
/1000
Figure 2. Channel Separation Test Circuit
1/2
OP200
e
OUT
1/2
OP200
10k
100
e
OUT
(nV/ Hz) = 2
e
OUT
(nV/ Hz)
101
TO SPECTRUM
ANALYZER
Figure 3. Noise Test Schematic
background image
REV. A
OP200
6
75
10
0
TEMPERATURE C
INPUT OFFSET VOLTAGE
V
V
S
= 15V
50 25
0
25
50
75
100 125
20
30
40
50
60
TPC 2. Input Offset Voltage
vs. Temperature
15
0.2
0
COMON-MODE VOLTAGE V
INPUT BIAS CURRENT nA
T
A
= 25 C
V
S
= 15V
10
5
0
5
10
15
0.4
0.6
0.8
1.0
TPC 5. Input Bias Current vs.
Common-Mode Voltage
FREQUENCY Hz
CURRENT NOISE DENSITY fA/
Hz
1000
10
1k
100
100
T
A
= 25 C
V
S
= 15V
1
TPC 8. Current Noise Density
vs. Frequency
Typical Performance Characteristics
TIME Minutes
5
0
1
CHANGE IN OFFSET VOLTAGE
V
2
1
2
3
4
5
T
A
= 25 C
V
S
= 15V
TPC 1. Warm-Up Drift
75
50
300
250
200
100
150
0
TEMPERATURE C
INPUT OFFSET CURRENT pA
V
S
= 15V
50 25
0
25
50
75
100 125
TPC 4. Input Offset Current vs.
Temperature
FREQUENCY Hz
CURRENT NOISE DENSITY nV/
Hz
10
1
100
10
100
1k
T
A
= 25 C
V
S
= 15V
TPC 7. Voltage Noise Density
vs. Frequency
75
0
2
2
TEMPERATURE C
INPUT BIAS CURRENT nA
V
S
= 15V
50 25
0
25
50
75
100 125
3
3
1
1
TPC 3. Input Bias Current vs.
Temperature
FREQUENCY Hz
COMMON-MODE REJECTION dB
0
1
20
40
60
80
100
120
140
10
100
1k
10k
100k
T
A
= 25 C
V
S
= 15V
TPC 6. Common-Mode Rejection
vs. Frequency
TPC 9. 0.1 to 10Hz Noise
background image
REV. A
7
OP200
SUPPLY VOLTAGE V
TOTAL SUPPLY CURRENT mA
1.06
2
6
10
14
16
1.08
1.10
1.12
1.14
1.16
1.18
TWO AMPLIFIERS
T
A
= 25 C
TPC 10. Total Supply Current
vs. Supply Voltage
75
0.2
0.1
TEMPERATURE C
POWER SUPPLY REJECTION
V/V
0.3
0.4
0.5
0.6
0.7
50
25
0
25
50
75
100
125
TPC 13. Power Supply Rejection
vs. Temperature
FREQUENCY Hz
GAIN dB
0
20
40
60
80
100
120
140
10
100
1k
10k
100k
T
A
= 25 C
V
S
= 15V
A
V
= 1000
1M
A
V
= 100
A
V
= 10
A
V
= 1
TPC 16. Closed Loop Gain
vs. Frequency
75
1.11
TEMPERATURE C
SUPPLY CURRENT mA
TWO AMPLIFIERS
V
S
= 15V
50 25
0
25
50
75
100 125
1.12
1.13
1.14
1.15
1.16
TPC 11. Total Supply Current
vs. Temperature
1000
0
OPEN-LOOP GAIN V/mV
V
S
= 15V
R
L
= 2k
2000
3000
4000
5000
6000
75
TEMPERATURE C
50
25
0
25
50
75
100
125
TPC 14. Open Loop Gain vs.
Temperature
FREQUENCY Hz
OUTPUT SWING V p-p AT 1% Distortion
0
5
10
15
20
25
30
10
100
1k
10k
T
A
= 25 C
V
S
= 15V
100k
TPC 17. Maximum Output Swing
vs. Frequency
0.1
20
0
FREQUENCY Hz
POWER SUPPLY REJECTION nA
NEGATIVE
SUPPLY
1
10
100
1k
10k
100k
40
60
80
100
POSITIVE
SUPPLY
120
140
T
A
= 25 C
TPC 12. Power Supply Rejection
vs. Temperature
FREQUENCY Hz
OPEN-LOOP GAIN dB
0
20
40
60
80
100
120
140
10
100
1k
10k
100k
T
A
= 25 C
V
S
= 15V
PHASE
GAIN
1M
20
180
135
90
0
PHASE SHIFT Degrees
TPC 15. Open Loop Gain and
Phase Shift vs. Frequency
FREQUENCY Hz
DISTORTION %
1
10k
1k
100
0.001
T
A
= 25 C
V
S
= 15V
V
OUT
= 10V p-p
R
L
= 2k
A
V
= 100
A
V
= 10
A
V
= 1
0.01
0.1
TPC 18. Total Harmonic Distortion
vs. Frequency
background image
REV. A
OP200
8
0
5
30
25
20
10
15
0
CAPACITIVE LOAD nF
OVERSHOOT %
0.5
1.0
1.5
T
A
= 25 C
V
S
= 15V
RISING
FALLING
1.0
1.5
3.0
35
40
45
50
TPC 19. Overshoot vs.
Capacitive Load
TPC 22. Large-Signal
Transient Response
1/2
OP200AZ
V
OUT
V
OUT
= 5 +
40000
R
G
V
IN
+ V
REF
20k
5k
5k
1/2
OP200AZ
7
5
6
V
IN
V
REF
3
2
R
G
20k
15V
+15V
1
8
4
Figure 4. Dual Low-Power Instrumentation Amplifier
The output signal is specified with respect to the reference
input, which is normally connected to analog ground. The
reference input can be used to offset the output from 10 V
to +10 V if required.
Gain
Bandwidth
5
150 kHz
10
67 kHz
100
7.5 kHz
1000
500 Hz
APPLICATIONS INFORMATION
The OP200 is inherently stable at all gains and is capable of
driving large capacitive loads without oscillating. Nonetheless,
good supply decoupling is highly recommended. Proper supply
decoupling reduces problems caused by supply line noise and
improves the capacitive load driving capability of the OP200.
APPLICATIONS
DUAL LOW-POWER INSTRUMENTATION AMPLIFIER
A dual instrumentation amplifier that consumes less than 33 mW
of power per channel is shown in Figure 4. The linearity of the
instrumentation amplifier exceeds 16 bits in gains of 5 to 200
and is better than 14 bits in gains from 200 to 1000. CMRR is
above 115 dB (Gain = 1000). Offset voltage drift is typically
0.2
mV/C over the military temperature range which is compa-
rable to the best monolithic instrumentation amplifiers. The
bandwidth of the low-power instrumentation amplifier is a func-
tion of gain and is shown below:
TIME Minutes
SHORT-CIRCUIT CURRENT mA
2
T
A
= 25 C
V
S
= 15V
SOURCING
SINKING
22
23
24
25
26
27
28
29
0
1
3
4
5
TPC 20. Short-Circuit
Current vs. Time
TPC 23. Small-Signal
Transient Response
FREQUENCY Hz
CHANNEL SEPARATION dB 100
10
100
1k
10k
100k
90
110
120
130
140
150
TPC 21. Channel Separation
vs. Frequency
TPC 24. Small-Signal Transient
Response C
LOAD
= 1 nF
background image
REV. A
OP200
9
PRECISION ABSOLUTE VALUE AMPLIFIER
The circuit of Figure 5 is a precision absolute value amplifier
with an input impedance of 10 M
W. The high gain and low
TCV
OS
of the OP200 ensure accurate operation with microvolt
input signals. In this circuit, the input always appears as a
common-mode signal to the op amps. The CMR of the OP200
exceeds 120 dB, yielding an error of less than 2 ppm.
1/2
OP200AZ
V
OUT
1/2
OP200AZ
7
6
5
V
IN
3
2
0V < V
OUT
< 10V
1
R1
1k
R3
1k
C1
30pF
D1
1N4148
C2
0.1pF
15
D1
1N4148
R2
2k
C2
0.1pF
+15
8
4
Figure 5. Precision Absolute Value Amplifier
PRECISION CURRENT PUMP
Maximum output current of the precision current pump shown
in Figure 6 is
10 mA. Voltage compliance is 10 V with 15 V
supplies. Output impedance of the current transmitter exceeds
3 M
W with linearity better than 16 bits.
1/2
OP200EZ
1/2
OP200EZ
5
6
V
IN
3
2
1
R5
100
15
+15
I
OUT
7
R1
10k
R2
10k
R3
10k
R4
1k
I
OUT
=
=
V
IN
RS
V
IN
100
= 10mA/V
8
4
Figure 6. Precision Current Pump
DUAL 12-BIT VOLTAGE OUTPUT DAC
The dual output DAC shown in Figure 7 is capable of providing
untrimmed 12-bit accurate operation over the entire military
temperature range. Offset voltage, bias current and gain errors
of the OP-200 contribute less than 1/lO of an LSB error at 12
bits over the military temperature range.
OUTA
V
DD
15V
OUTB
I
OUT
A
I
OUT
B
R
FB
A
AGND
5V
V
REF
A
V
REF
B
DAC A/DAC B
CS
WR
DAC
CONTROL
10V
REFERENCE
VOLTAGE
DAC-8222EW
DAC A
DAC B
1/2
OP200AZ
1/2
OP200AZ
23
2
3
4
5
6
7
8
18
19
20
21
22
1
24
4
2
3
+
+
DAC DATA BUS
PINS 6(MSB) 17(LSB)
5
1
1/2
DAC8212AV
1/2
DAC8212AV
R
FB
B
DGND
Figure 7. Dual 12-Bit Voltage Output DAC
background image
REV. A
OP200
10
DUAL PRECISION VOLTAGE REFERENCE
A dual OP200 and a REF-43, a 2.5 V reference, can be used to
build a
2.5 V precision voltage reference. Maximum output
current from each reference is
10 mA with load regulation
under 25
mV/mA. Line regulation is better than 15 mV/V and
output voltage drift is under 20
mV/C. Output voltage noise
from 0.1 Hz to 10 Hz is typically 75
mV p-p. R1 and D1 ensure
correct start-up.
PROGRAMMABLE HIGH RESOLUTION WINDOW
COMPARATOR
The programmable window comparator shown in Figure 9 is
easily capable of 12-bit accuracy over the full military tempera-
ture range. A dual CMOS 12-bit DAC, the DAC-8212, is used
in the voltage switching mode to set the upper and lower thresh-
olds (DAC A and DAC B, respectively).
V
DD
OUTB
I
OUT
B
R
REF
A
AGND
15V
DAC A/DAC B
CS
WR
DAC
CONTROL
SIGNALS
10V
REFERENCE
1/2
OP200AZ
1/2
OP200AZ
4
4
5
7
8
18
19
20
21
24
22
2
2
3
+
DAC DATA BUS
PINS 6(MSB) 17(LSB)
5
1
R
REF
B
DGND
+
DAC A
DAC B
1/2
DAC8212AV
1/2
DAC8212AV
I
OUT
A
1
15V
V
IN
R3
10k
R4
10k
5V
TTL OUT
D1
1N4148
D2
1N4148
R1
10k
R2
10k
Q1
2N2222
Figure 9. Programmable High Resolution Window Comparator
1/2
OP-200AZ
1/2
OP200AZ
R2
10k
5V
7
6
5
4
2
3
8
R4
5k
2.5V
2.5V
6
R3
10k
R1
22k
+5V
REF-43A
4
2
D1
1N914
Figure 8. Dual Precision Voltage Reference
background image
REV. A
OP200
11
OUTLINE DIMENSIONS
Dimensions shown in inches and (mm).
PIN CONNECTIONS
16-Pin SOIC
(S
-Suffix)
SEATING
PLANE
0.0118 (0.30)
0.0040 (0.10)
0.0192 (0.49)
0.0138 (0.35)
0.1043 (2.65)
0.0926 (2.35)
0.050 (1.27)
BSC
16
9
8
1
0.4193 (10.65)
0.3937 (10.00)
0.2992 (7.60)
0.2914 (7.40)
PIN 1
0.4133 (10.50)
0.3977 (10.00)
0.0125 (0.32)
0.0091 (0.23)
8
0
0.0291 (0.74)
0.0098 (0.25)
45
0.0500 (1.27)
0.0157 (0.40)
Epoxy MINI-DIP
(P-Suffix)
SEATING
PLANE
0.060 (1.52)
0.015 (0.38)
0.210
(5.33)
MAX
0.022 (0.558)
0.014 (0.356)
0.160 (4.06)
0.115 (2.93)
0.070 (1.77)
0.045 (1.15)
0.130
(3.30)
MIN
8
1
4
5
PIN 1
0.280 (7.11)
0.240 (6.10)
0.100 (2.54)
BSC
0.430 (10.92)
0.348 (8.84)
0.195 (4.95)
0.115 (2.93)
0.015 (0.381)
0.008 (0.204)
0.325 (8.25)
0.300 (7.62)
8-Pin Hermetic DIP
(Z-Suffix)
1
4
8
5
0.310 (7.87)
0.220 (5.59)
PIN 1
0.005 (0.13)
MIN
0.055 (1.4)
MAX
0.100 (2.54)
BSC
15
0
0.320 (8.13)
0.290 (7.37)
0.015 (0.38)
0.008 (0.20)
SEATING
PLANE
0.200 (5.08)
MAX
0.405 (10.29) MAX
0.150
(3.81)
MIN
0.200 (5.08)
0.125 (3.18)
0.023 (0.58)
0.014 (0.36)
0.070 (1.78)
0.030 (0.76)
0.060 (1.52)
0.015 (0.38)
background image
REV. A
12
C0032204/02(A)
PRINTED IN U.S.A.
OP200
Revision History
Location
Page
Data Sheet changed from REV. 0 to REV. A.
Edits to FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Edits to GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Edits to ORDERING INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Edits to PIN CONNECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Edits to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Edits to PACKAGE TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Document Outline